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L. Chen et al.

1 Introduction

Consider the following stochastic heat equation

a v’ .
% 292 u(t,x) =pu(,x) Wk,x), x eR, t >0, .0
u@,-) = n(),

where W is a space-time white noise and p : R — R is a globally Lipschitz function. The
initial data p is a signed Borel measure, which we assume belongs to the set

My[R) = {signed Borel measures , S.t. / e_‘”2|u|(dx) < +o0, foralla > 0} .
R
In the above, we denote |u| := 4+ + n—, where 4 = 4 — p— and p4 are the two non-
negative Borel measures with disjoint support that provide the Jordan decomposition of L.
The set M g (R) can be equivalently characterized by the condition that

(Jul * Gy(t, ) (x) = / G, (t,x — y)|u|(dy) < 400, forallr > 0andx € R, (1.2)
R

where * denotes the convolution in the space variable and G, (¢, x) is the one-dimensional

heat kernel function
%2
Gy(t,x) = expy—=—¢, t>0,xeR.

1
V2wt 2vt

The initial condition u(0, -) = w(-) is understood as lim, o u(, -) = u(-) in the sense of
distribution (we identify a measure as a distribution in the usual sense; see [7, Theorem
1.7],). Denote

Jolt, X) = (% Gylt, D) = /R Gult, x — y)u(dy).
Define the kernel function
4t
K, x) =K@, x;v, 1) = G%(t,x) . <¢% + % e%cb ()\2\/%>> , (1.3)

where @ (x) = ffoo (271)_1/26_y2/2dy. Some functions related to ®(x) are the error func-
tions erf(x) = %fo e_yzdy and erfc(x) = 1 — erf(x). Note that ®(x) = erfc(—x/\/i)/Z.
When p(u) = Au, the following moment formula is proved in [6]

E(u(t,x)z) = J3(t, %) + (2 K) (. %), (1.4)

T3}

where “x” denotes the convolution in both space and time variables, that is,

t
(J(% * K)(t, x) = / ds/ dy J(%(s, WK —s,x — y). (1.5)
0 R

As for the two-point correlation function, define
Z(t, x1, T, x25 v, &) 1= A2 fydr [ dz [J2(r,2) + (JE(, 0) * K(, 03 v, 1)) (r, 2)]
xXGy(t —r,x1 —2)Gy(t — 1, x2 — 2).
Then by [6, (2.26)], forall T > ¢ > 0 and x1, x3 € R,
E[u(t, x1)u (zr, x2)] = Jo(t, x1)Jo (T, x2) + Z(t, X1, T, X2; V, A) . (1.6)
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Two-point Correlation Function and Feynman-Kac Formula...

The first goal of this note is to simplify the moment formulas (1.4) and (1.6) for the
case t = 7. Note that the terms (JO2 * [C)(¢, x) and Z(...) involve four and six integrals,
respectively. We will reduce these integrals into only two integrals: two convolutions of the
initial data with respect to a kernel function.

It is well known that if the initial data is a function, then the moments of the solution to
(1.1) with p(#) = Au admit a Feynman-Kac representation; see [10]. Suppose that p(dx) =
up(x)dx where up is a bounded measurable function. This representation says that for all
x €eR,i=1,...,n,

n n
E[Hu(t,xi)]:EB Hu()(x,-—l—Bti)eXp 2y ftaxj,x,. (B;Z—Bg')ds L(17)
0

i=1 i=1 I<i<j<n
where {Bf,t > 0},i = 1,...,n, are ii.d. standard Brownian motions on R, and the

expectation is with respect to all these Brownian motions.
On one hand, direct evaluation of this expectation when n = 2 is not easy since it

involves the joint law of a standard Brownian motion B; and its local time L{ at an arbi-
trary level a € R. To the best of our knowledge, we are not aware of any references for
this joint law expect the case where a = 0. We will derive this joint distribution and then
give an alternative and more probabilistic proof of the formula for the two-point correlation
function.

On the other hand, when the initial condition is a measure the meaning of (1.7) is not
clear. Another aim of this paper is to make sense of (1.7) for initial data in M g (R) using
Malliavin calculus. More precisely, we show that []/_, uo (x; + B}) belongs to the Meyer-
Watanabe space D™% 7 of Wiener distributions for any p > 1 and « > n(1 — 1/p), and the
exponential factor in (1.7)

Vymexp 32 Y /taxj,xi (Bi - B!)as (1.8)
0

I<i<j<n

belongs to D*? forany p > l and o < % Then, we can choosing p such thatn(1—1/p) <
a < 1/2, we can write

n n

E|:l_[u(z,xi):| =<1_[u0 (xi +B;'),Yn>, (1.9)
i=1 i=1

where (-, -) denotes the duality between D~%7” and D*4,if 1/p + 1/q = 1.

When p(u) in (1.1) is nonlinear but satisfies the global Lipschitz condition, the explicit
formula for the moment of the solution is impossible. We obtain an upper bound for the p-
moment of the solution and a lower bound for the second moment. The idea is to compare
them with the ones in the linear case.

We first state our main results in Section 2. The result for the two-point correlation
function, Theorem 2.1, is proved in Section 3. In Section 4, the joint law of (B;, L{), The-
orem 2.8, is proved. In Section 5, we give the alternative proof of our two-point correlation
formula for function-valued initial data. Finally, by proving Theorems 2.10 and 2.11 in
Sections 6.1 and 6.2, respectively, we make sense of (1.7) for measure-valued initial data.

One may think to extend the above frame to two spatial dimensions. However, since the
equation has no classical solution for space time white noise, a renormalization procedure
may be needed even in linear case ([4]).

Throughout of the paper, ||-||,, denotes L?(2) norm.

@ Springer



L. Chen et al.

2 Main Results

2.1 Formulas for Two-Point Correlation Function

Theorem 2.1 Suppose that u € My ®R). If p(u) = Au, then forallt > 0 and x1,xy € R,
E [u(t, x)u(t, x2)] = [fga u(dz1)p(dz2) K* (2, x1 — 21, X2 — 22, x1 — x2: 1), (2.1)

or

Eu(t, xpu, x2)] = Jo(t, x1)Jo(t, x2)
+ /A‘{Z w(dz)m(dz) KT, x1 — 21, x20 — 22, x1 — x2; A), (2.2)

where
. A2 21+ 22 22 2
K'(t,z1,22, y; M) =—Gua | 1, R D ) - -z
(121,22, 3 1) =5 /2( : )exp =2+ - @ -2
2t =yl + 1y — @1 — )
x ¢ .
A 2vt
2.3)
and
K*(t, 21,22, y: &) = Go(t, 21)Go(t, 22) + KT (1, 21, 22, 3 1)
21 +22
= Gy (t, ! > ) [qu(t,m —22)
e (Z 224y - @ -2]) @)
—exp| — - — — .
2v p 4y Y Y a2
22t —(yl+ |y — 1 — 22)) ]
x P .
20t
In particular,
lu(t, X)|13 = S g2 m(dz)(dz2) K*(t, x — 21, x — 22,05 1). (2.5)

In the following, we will use the convention that for any pair (wy, wy) of variables,
w:=(w; +wy)/2 and Aw :=wy— wi. (2.6)

Remark 2.2 Formulas (2.1) and (2.2) are in the convolution form. One can also write them
in the following inner product form:

E[u(t, x)u(t, x2)] = [[go m(dz1)pu(dz2) K* (¢, x1, x2, 21, 22: 1), 2.7

or

E [u(t, x))u(t, x2)]1 = Jo(t, x1) Jo(t, x2)+ [ fgo m(dz)(dz2) KT (2, x1, x2, 21, 22 1), (2.8)
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where

A2 o 22(|Ax| + |Az A
KT (t, x1,%2, 21, 22; 2) =G a(t, ¥ — 2) exp _A(Ax(+|Az) A
2v 2v 4p

2.9)

o (x% _laxl+ |Az|>
V2v Vvt
and
K*(t,x1, x2,21,22) = G(t, x1 —21)G (1, x2 — 22) + KT (£, x1, %2, 21, 221 )

o 22 A2 Ax|+|Az]) At
= Gup(t, §=2) Gou(t, Ax—AD)F Zexp|-—————+

2v 4y
M2Vt |Ax| + | Az ]
[} — . 2.10
x («/21} v/ 2vt ( )

Example 2.3 (Delta initial data) When p = &, then
lu(t, X)I13 = K*(t, x, x,0; 1) = A2 K(t, x),
and
E[u(t, x0u(t, x2)] = K*(t, x1, x2, x1 — x2; 1)
Go(t, x1)Gy(t, x2) + KT (t, x1, x2, 31 — x23 A)

22 X1 +x
Gy(t. x1)Gy(t, x2) + =Gy 1, 2222
v 2 2

2202 —2|x1 — x2)) @ A2t — |x1 — x|
X ex .
p 4v /2vt

This recovers the results in [6, Corollary 2.8].

Remark 2.4 Note that the function m(¢, x1, x2) = K*(¢, x1, x2, 0, 0), or equivalently
my(t, x1, x2) = K*(¢, x1, x2, x] — x2), solves the following parabolic equation (see e.g.,
[5, Theorem 3.2 on p. 46])

d
ng(t,xlsXZ) =Hy(v,\) ma(t, x1,x2), t>0,x1,x R,

my(0, x1, x2) = 8o(x1)d0(x2),
where the operator
Hy(v.3) = > (32 + 32) + 280(x1 — x2)
2 \ax?  ax3
is the 2-particle Schrodinger operator (see [5]). We remark that this operator resembles the
perturbations of Laplace operator in R? by point interactions, namely,
Hyjy=—Ag+28,(), forreRandyeR?,

which have been studied intensively in the literature; see, e.g., [2, 3]. The main difference
between these two operators is the interaction term. The interaction measure in H (v, A)
concentrates on the diagonal line x; = x;, while that in H, ; , concentrates on a single
point y.
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Example 2.5 (Lebesgue’s initial measure) When p(dx) = dx, then from (2.2) or (2.8),

E[u(, x)u(t,x2)] = 1+// dz1dzp lC‘(t Z1,22, X1 — X2; A)

= l—|—/dzexp< )»21‘—2(|x1 — x2| + |x1 —xz—z|)]>

(ﬂr — (Jx1 — x2| + |x1 —x2 — z>|>>
x D

v 2vt
Hevdimol (22— b — x| ( o — x2|>
=2 & O —|+2d -1, (2.11)
( v 2vt v 2vt
and in particular,
W 2
lute, D13 = 2% @ (5. 2.12)

These two formulas (2.11) and (2.12) recover the results in [6, Corollary 2.5]. Note that the
equality in (2.11) can be established through integration by parts.

Corollary 2.6 Let L} be the local time of the standard Brownian motion. Then for all
reR t>0andx e R,

E [exp (37L7) | = 227 (1237 = 1x1//7) 4+ 20 (1x1/7) —

In particular,
E [exp (Asz)] <2 A2 4,

Proof Let u(t, x) be a solution to (1.1) with p(u) = V22, v =1,and ug(x) = 1. By the
Feynman-Kac formula (1.7) withn = 2, x; =0, and xp = x,

Efu(r/2, 0)u(t/2, x)] = E[exp(n2 /O t/zax(B‘j —Bf)ds>] :E[exp <2A2 /O t/zax(Bég)ds):I

= E[exp ()\zfoth(B;)drﬂ =E [eXp ()»ZL?C):I ,

where B is a standard Brownian motion. Then apply (2.11) with A2, ¢, and v replaced by
202, 1 /2, and 1, respectively. O

For the p-th moments, we have the following bound, which simplifies the expression in

[6]. Denote
[1ifp=2,
»=12ifp>2.

Theorem 2.7 Let u(t, x) be a solution to (1.1) starting from u € Mg(R). Forallt > 0
and x € R, the following moment bounds hold:

(1) Iflo(x)| <L, |x| forall x € R, then for all p > 2,

e, 011 < [/R @Dl @z, (4% — 21, % — 22),
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where
il
K1, 21,22) = ¢ K*(t, 21, 22, 05 ¢/ p/2 Lp);
2) Iflp(x)| =1y |x|forallx € Randif u > 0, then

lu(t, x)I13 > //Rz n(dz)p(dz2)K*(t, x — 21, x — 22,05 1).

Proof Part (2) is clear. As for (1), note that the upper bounds for both 2nd and p-th moments
share similar forms (see [6, (2.21)]), but with different parameters. By the notation in [6],
apo = ,/cpand z, = c?,/zm. Then replacing the parameter A in C* by a0z, L, and
multiplying it by a factor ¢, one passes from 2nd moment to p-th moment (see [6, Theorem

2.47). O

For the alternative proof of Theorem 2.1, we will need the following joint density of the
standard Brownian motion B; and its local time L{ at a level a € R, which is by itself
interesting. When a = 0, it is well known (see, e.g., [8, Exercise 1, on p. 181]) that this law
is

i 0 ClFe o dyl+w)?
P (B, edy, L0 ¢ dv) = e ( ) Loy, @213)

More generally, we have the following theorem.

Theorem 2.8 The joint distribution of (B;, L) fort > 0 and a € R is

la| + [y—al + v <(|a|+|y—a|+v)2>
lal+ly—al+v
(2.14)

P(Bl dy, L9 d)=1
0 €O Ee € Q)= vz0) ZDE 2

1 _2 _ Qa—y?
e x —e 2 1{sign(a)y§|u|}80(v) d)’dv,
where sign(a) = 1ifa > 0and —1ifa < 0.

Corollary 2.9 The law of LY fort > 0anda € R is
V2 (v + la])? la|
P(L} edv) = | —= - 20— | — 116 1 dv.
( 1 € U) <ﬁexp 2 +|: («/E) ] 0(v) {v=0}dV

Proof Integrate the right hand of (2.14) for dy over R. For the first term, use the integration-
by-parts formula. For the second term, use the definition of ®(-). O

2.2 Feynman-Kac Formulas for Measure-Valued Initial Data
Let H be a Hilbert space with inner product (-, -) and let W = {W(h), h € H} be a zero

mean Gaussian process with covariance function E(W (h)W(g)) = (h, g). For any square
integrable random variable F € L2(Q), let

F=E[F1+ Y L(f)

n=1
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be its chaos expansion, where f, € H &n (symmetric tensor product) and I, denotes the
multiple stochastic integral. Let L be the generator of the Ornstein-Uhlenbeck semigroup,
ie, LF ==Y > nl,(fy). Foranys € R, denote by D*” (H) the completion of H-valued
polynomial random variables with respect to the norm

1Flly,p = || = L2 F|

LP(QuH)

We refer [11] for more details. o
In our framework, H = L?(R4;R") and forany h € H, W(h) = Y1, [;° hidBL,
where {Bti ,t >0},i =1...,n, are n independent standard Brownian motions on R.

Theorem 2.10 Forany u; € MyR), x; e R, h; € H,i = 1,..., n. It holds that

n
l_[ui(W(hi)+x,-)€D_“’p(R) ifa+n/p>na>0andp > 1.

i=1

Theorem 2.11 Let B = {E}, t > 0}, i € I, be one-dimensional Brownian motions belong-
ing to Gaussian space spanned by W, where I is a finite set with m elements. Let L}, i € I,

be the local time of B. Suppose that the function f : R% — R satisfies that aaxzz f >0and

~max sup ’
=l ey Leme(=1,1)

f; (L,‘*’”*e' Fep, ..., LMty em)H < 400, (2.15)
P

forallt >0, x; € R, and p > 2, where f; = %f. Then
f (Ltl’xl,...,L:"’x’”) eD*PR)  ifp>landa <1/2.
In particular, one can choose f(z1,...,2m) = €xp (Az ZT:] zj), LeR

Choosing h; = 1[0}, 1 <i < n, Theorem 2.10 implies that

n
Huo (xi+Bli) € D™*P(R) ifa+n/p>na>0andp > 1, (2.16)

i=1

for up € Mg (R). On the other hand, choosing I = {(j,k) : 1 < j < k < n} and
BUX = BJ — B Theorem 2.11 implies that the random variable Y, defined in (1.8)
belongs to D*(R) if ¢ > 1 and « < 1/2. Therefore, by choosing p close to 1 such that
n(l—1/p) < 1/2, and choosing ¢g such that 1/p 4+ 1/g = 1, one can see that the Feynman-
Kac formula (1.7) is well defined as the duality relationship (1.8), for any ug € My (R).
This can be proved using the fact that ug * G1 (e, -) converges to ug, as € tends to zero, in
the topology of D~% 7 (R).

3 Proof of Theorem 2.1

Proof of Theorem 2.1 The proof consists of the following two steps:

Step 1. We first prove the second moment (2.5). Write JO2 in the form of double integrals

(g *K)(t, x) = [ods [pdy Kt —s,x = y) [[go (dz1)pe(d22) G (s, y = 21)Go (s, y — 22).
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By [6, Lemma 5.4] and the notation (2.6),

Gy(s,y —z21)Gu(s,y —22) = Gyp2(s, y —2)Gy(2s, Az). 3.1
Denote
H(t) = : E P (Az t) . (3.2)
W 2v 2v

By Fubini’s theorem and the semigroup property of the heat kernel,
t
(Jg *K)(t,x) = 27 /f u(dznu(dzz)f ds Gu<2s,Az>/ dy K(t—s,x=y)Gy (s, y=3)
R2 0 R

t
=22 //2 u(dz)pu(dz2)Gya(t, x — 2)/ ds G,(2s, AQ)H(t — 5).
R 0

Now we will use the Laplace transform to evaluate the ds-integral. By [9, (27)
on p. 146],

exp (—v_l/z x| v/Z)

LG (-, )](z) = NG (3.3)
By (1) on p. 137 and (5) on p. 176 of [9],
o = 2 M
DT hz 2 T2z 2z (dvz — A%
1 1 1 N 1
2 \2 vz —A2 2 vz +A2) 2 vz
,\2 1 1
f 2z =22 2+ A2 )
Hence,
LIHI()LI[G20 ()12 = f1,- (2, %)= f1,4(2, X) + folz, ¥) + f3,- (2, %) — f3,4(z, %),
where
_exp(=v2lye)
N = e
exp(—v=12|x|/Z
Frzx) = P(Tzl\f)
_ 22 exp(—v~12(x|/Z)
f3,i(2 x) = W
Apply [9, (16) on p. 247] with o = v~/2|x| and g = i%,
LoLfisCo0l) = o B+ a erfo (L + 240) (3.4)
Apply [9, (3) on p. 245] with & = v~ !|x|?,
lx|
6010 = gerfe (L),
Apply [9, (14) on p. 246] with @ = v~ /?|x| and g = ijﬁ,
L7 fsm (010 = (erfc (J;LW) R A (J%t + %) )
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Step 2.

Therefore, the ds-integral is equal to

t 1 a2z ot A 327
/ ds Goy(s, A)H(t — 5) —Ep A e ( |Az] J)
0

= —e¢ 2v
4v \/E Nz
1 _A%Azbr& )sz |Az]

= —e¢ 2v 4v .
2v V2v «/ZTI

Finally, by (3.1),

Jgt, x) = //Rz p(dz)pu(dz1)Goya(t, x —2)Ga(t, Az).

This proves the formula (2.5), i.e.,

e, 31 = ffRZMdzou(dzz) Gupalt, x — )

A2 a2aa ot (AT | Az
x (Ga(t, Az) + 2" T @ .
( : 2v (\/2\) 2vt
(3.5)

Now let us consider the two-point correlation function (2.1). Fix ¢t > 0 and
x1,x2 € R. Apply (1.6), (3.1) and (3.5), and then integrate over dy using the
semigroup property:

t
Z(t,x1,t,x2;v,A) = AZ/ drf dy lu(r, W13 Gupa(t — 1, % — y)Gay(t — 1, Ax)
0 R

t
Azﬁ dr/Rdy Gupalt — 1 % — Y)Gault — 1. AX) // p(dznndz)

_ A2 a2an b 22 Az
><Gv/2(r,y—z)<G2v(r,Az)+zve TP ( f 1Az|

V2v V2vr
! ~
= )»2//]}%2 u(dz)p(dz2) Gy, x — Z)/O dr Gy (t — r, AX)H (1, Az),

where

~ 2 _ H
Ht,x) = Goy(t,x) + oo™ "5 +4 @(AQ [L— fz%)

Here, ﬁ(t, 0) = H(t); see (3.2). Notice that

1 22m a4 t |x| 122, a4 t |x|
_— 2v + 4v (I) )\,2 _— = — 2v + 4v rfc )\,2 .
4\)6 ( 2v «/21);) 8ve 4y + Va4t

Hence,

H(t,x) = Gay(1,x) + 202 L7 fi - (. 0)1(0).
Together with (3.3), we have that,

~ exp(—v1/2|x
LI, D)) = S A,

and

~ exp(—v™ 12 (x| +1x'])v/Z ,
L1G2u @ LU (30 = S oy (e, + 1),
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By (3.4),
t 2 4
_ 71 B 2 (Azﬁ _ |Ax\+mz|>
/(; dr Goy(t —r, AX)H(r, Az) = 55¢ 2 P e Ve .
Therefore,

E [u(r, xu(t, x2)] = Jo(t, x1) Jo(t, x2)+ //RZ p(dzi)u(dz2) Gopa(t, X — 2)

Vv V2ur

X—e

2 2
A )\Z(A.EI‘)+AZ)+A:”/¢()\, ﬁ_ |Ax| 4+ IAZ)A
2v

This completes the proof of Theorem 2.1.
O

4 Proof of Theorem 2.8

Proof of Theorem 2.8 The case when a = 0 is covered in (2.13). Let g : R x Ry — R be
a smooth and bounded function. Denote the joint density of (B, L{) by fu:(x, y). Then

E[g(B”L?)]:/o dyfRdx g0 ) fur (2 9).

First assume that a > 0. By the reflection principle (see [13, p. 107]), the density of T, :=
inf(s >0, By =a)is

a a?
fr,(s) = —=exp|—= ], fors >0anda > 0.
A2 s3 2s

Let {#;};>0 be the standard Brownian filtration. By the strong Markov property,
E[g(B,. LT)] = E[E (¢(Br. L) F7,) Liz,<n] + E[E (¢(Br. L) Fr,) Lz, 0]

t
=[5 ) [gBic+ a. 22 )] + B 205 011,0)
0
=:1I1+ D,

where B; is a standard Brownian motion and i? is its local time at the level 0. We first
compute /7. By (2.13),

I = f/ dydv g(y+a v)/tdsLexp —é |yl$6xp —M
RxRy "o Vans? 2s | \2n(t — 5)3 2(t—s)

2
=// dydv g(y +a. v) T2V o (@ IFVTY
RxR4 27 t3 2t

where in the last step, we have used the fact that the densities f7, form a convolution
semigroup, namely, fr, * fr, = fr,., (see [13, p.107] or Lemma 4.1 below for a short

proof).
As for I, let M; = sup,., B;. Then, by the joint law of (B, M) (see, e.g., [13, Ex. 3.14

p. 110]),

a m 3 (2m — o — 5
I2=]E[g(Bt,0)1{M[<a}] = /(; dm/ dy g(y’o)wexp (_(mZ[y))
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a 2m — 2m — 2
:/ dyg(yo)/ f(m3y) Xp(_(m2 y))
—00 Y+ e t

a ) a—v)2
= / dy g(y,0) —E e‘aT))),
—0o0

7 (

where y; = max(y, 0). Note that 2y; — y = |y|. Combining these two parts, we see that

fowy | b malte  f @iy —al+v)?
Jatds Q1) 2
1 _2 — Gy »?
+ T e 7% —e l{y<a)bo(v) [1{w=0}-
If a < 0, by symmetry, let B; = —B; and I:? be its local time. Clearly, the density of

(Et, Z,‘“) is f_a(y, v). Therefore, the law of (B;, LY) is fjq/(—y, v). Then use the fact that
|—y—lall = |y—aland |2|a|+y| = |2a—y|. This completes the proof of Theorem 2.8. [

Lemma 4.1 Fort > 0and a, b # 0, the following integral is true

t 2 2 2
b +|b + b
lab|(s(t —s))_3/2 exp _e ds = lal + | |exp —7“61' 1b1) .
0 2s  2(t—) 2713 2t

Proof Denote the integral by 1(7) and let g, (t) = |a| t=3/2¢%°/?)_ By [9, (28) on p. 146],

L1ga] (2) = v/2me™YalVz, @.1)
So, L[I1(z) = LIga] @ LI[gp] (z) = 2e—V20al+bDVZ Then use (4.1) for the inversion.
O

5 An Alternative Proof of Theorem 2.1
If the initial data p is such that u(dx) = wuo(x)dx, where ug is a bounded measurable

function, then we can use the Feynman-Kac representation (1.7) with n = 2 and Theorem
2.8 to give an alternative proof of Theorem 2.1.

An alternative proof of Theorem 2.1 For initial data specified above, E (u(t, x1)u(z, x2))
admits the Feynman-Kac representation (1.7). Let

1 . 1 2 2 1
Wy, =B, —B;, and W;, =B, + B

Note that W, and W? are two independent standard Brownian motions. Then,

E (u(t., x1)u(t. x2) =E(uo (142703, + W31 o (w2 427193, — Wi, 1)

cexp (32 [ ey (W) 5 )

:/dz qu(t,z)E<u0 (x1+2_1[W21w+z]) o (xz—l—Z_l[z—Wle])
R
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t
X exp <)\,2/ 8)62—)‘1 (Wzlw) ds) )
0
Notice that
2 ! A2 [2vt 32 )
exp ()\ / 8xy—x) (Wzlvs) dS) = exp 27/ 8xy—x) (Wsl) ds | =exp TL;%U .
0 v Jo .

where L¢ be the local time of W, at the level a. Then the expectation in the above integrand
becomes

2
E(uo (v1 4270w, + 21) wo (2 + 2711z — Wi, 1) exp (AL”_X‘> ) 5.1)

2v 2vt

By Theorem 2.8, this expectation is equal to

.+ . —
/dy u o a+ Y up o+
- 2 2

/°° ly — Ax| +|Ax| + v (Iy — Ax|+v+]Ax])> A%
X dv exp | — + —
0 433 4vt 2v

+ / dy uo(x1 + (z+ y)/Duo(x2 + (2 = y)/2) [G2u (¢, y) — G2 (7, 2Ax — y)].
sign(Ax)y<|Ax|

(5.2)

By integration by parts, the dv-integration in (5.2) is equal to

1 )\zﬁ 7(\y—Ax\I\A.\‘I+v)2 v=0 n 22 °°d 1 32*" 7<\y—Ax\I\Ax|+w2
eve vt — v eve vt
4t veoo 2V Jo VAT vt
A2 a4 a20y-axlsiax) t |y — Ax|+|Ax]
— Galt, |y — Ax| + [Ax) + —e® =BT e (22 ) - 2T
2v 2v v 2vt

Denote the dy-integral in (5.2) by /. By symmetry, we will only consider the case where
Ax > 0. In this case, the dy-integral is from —oo to Ax. By the change of variables y’ =
2Ax — vy,

Ax
/ dyuo(x1 + (2 + y)/2Quo(x2 + (z — ¥)/2) G2y (¢, 2Ax — y)
% (5.3)

= /A dy uo(x1 + (z 4+ ¥)/2uo(x2 + (z — ¥)/2)Gay (2, ).

Hence,

I= / dy uo(x1 + (2 + y)/uo(x2 + (2 — ¥)/2) [G2u (t, Y 1{y<ax) — G2v(t, ) y>ax)] -
R
Notice that

G (t, V) jy<axy — Gou(t, Y 1ysax) + Goy (@, |y — Ax| + Ax)
= [G2v (1, y) + G2y (1, 2Ax — )] 1{y<ax}-
Therefore, by (5.3), we know that

A; dy uo(x1 + (z + y)/2uo(x2 + (z — y)/2)

x (Gaut, M 1yzan) = Gavlt, V1 iy=an + Gl |y = Ax| + Ax))
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= / dy uo(x1 + (z +¥)/Quo(x2 + (2 — y)/2)G2 (2, y).
R
Combining these calculations, we have that

E (u(t, x)u(t, x2)) = f/R2 dzdy ug(x1 + (z + y)/2)uo(x2 + (z — ¥)/2) G2y (¢, 2)

A2 a4 2Qy-axlrax) , [t |y — Ax|+]|Ax]
G t, — e h 2v DA _ .
X ( w(t,y)+ 2ve ( o m

Finally, by change of variables z; = x1 4+ (z + y)/2 and 2z = x 4+ (z — y)/2, we have that

B (u(t, x)u(t, ) = f/R d21dz> 0 (2)u0(22)2Ga0 1, (21 +22) — (11 +x2))

X (GzU (t, Az — Ax)

A Me AWz — 2ol + |Ax| o [0 |z =zl +1Ax]

+ meXp(zwzu *\* Vv )
Notice that 2G, (1, (z1 + z2) — (x1 + x2)) = G,2(t, X — Z). This proves (2.1) (see (2.8)
and (2.10)). O
6 Feynman-Kac Formula for Measure-Valued Initial Data
6.1 Initial Data Part (Proof of Theorem 2.10)
We need some lemmas.

Lemma 6.1 Foranyt >0,s >0, x € R, y; e R, i =1,..., p, it holds that

p 2 P
t px=
Gi(s.x+2) [[Git.z = ypdz = (p + D/ [—— T [ [ Gi((p + Dt yi).
/R 1(s, x +2) 1t z—ypdz<(p+1 ps+te 1((p+ e, yi)

j=1 i=1

Proof Denote y = (y; +--- + yp)/p. Notice that

P _=\2 24492 py2
l_lcl(r,z—y,,o:(z;n)P”exp(—(Z ”)exp(—y‘ i py)

i 2t/ p 2t

2 2 -2
J’- . + —
= Qrt)y~ P2 p=12G (1/p, 2 — §) exp (— ol Ztyp Py ) )

Hence, by the semigroup property of the heat kernel, the dz integral is equal to

p
/dz G](S,X+Z)HG1([az_yj)
R

j=1

2 2 -2
4y
= @ty PV2pT12G (s +1/p. x + §) exp (—yl 2[yp Py )

)2 24 ... 2 52
:(Zﬂ)p/zl(pl)/z(Ps-i-t)1/2exp<_p(x+y) ity N>

2(ps +1) 2
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IA

52 2 2422
Q)PP (pg 41y 2 exp [~ PY_— 2px* Y+t y,—pYy
4(ps +1) 2t

2 52 24 ... 2
Qr) PP P=D2 (ps 4 t)fl/zem exp (py (t2ps) Vit yp)

4t(ps + 1) 2t

IA

_p? t+2ps 1
2 P/2=(p=D/2 (e 1+ =12 o2 ] L RO
2m) (ps+1)""e P\ Gt 2 OF 4+ ¥p)

2 2. ... 2
< @) PR DR (s 4y 12T exp (2L
- 2(p + Dt
z e[
= (p+ DPFe2ri | [ Gi((p + Dt, yi).
ps+t il
This proves Lemma 6.1. O

Let T, be the Ornstein Uhlenbeck semigroup of operators on L2(£2) with generator L.

Lemma 6.2 Forany tj € MygR), h; € H,and x; € R, i = 1, ..., n, it holds that

T, (H i (xi + Wi<h,~>)) =11 [ui * Gi(|hil* (1 —e™), -)] (i + e~ Wihy),
i=1

i=1

fort > 0, where W; are i.i.d. zero mean Gaussian processes W; = {W;(h),h € H} with
covariance function E(W; (h)W;(g)) = (h, g).

Proof Fix € > 0. Let u; (x) = (i * G1(€, -))(x). By Holder’s inequality,

n n i/n
E []‘[ i (Wi (i) + mz] = TTE [ With +x0>] .
i=1 i=1

Notice that forall p > 1,

p
E [I i, (Wi (hi) + x)17] =/Rdz Gi(lhi*, x +2)

/ Gi(e, z — y)pi(dy)
R

P
5/1'{ |u,~|(dy1)...|m|(dy,,)/1;dzGl(|hf|2,x+z)1‘[Gl<e,z—yj).
,
j=1

By Lemma 6.1 with t = € and s = |h; |,
px?
E [I1ti.e (Wi (hi) + x)1P] < (p + DP/Ze20hi40 [(11;] % Gi(e(p + 1), DO,
which is finite because u; € My (R). Hence, ]_[;’:1 wie(Wihi) + x;) € L3(R), and one
can apply Mehler’s formula (see, e.g., [11, Section 1.4.1] to obtain that

n P
T, (1‘[ e (xi + W,-<h,-)>> E' []‘[ i (i + e Wilh) +/1 = W{(h,-))}
i=1

i=1

n
= A@ﬂ Hll«i,e (xi + e "Wi(hi) + yi) Gi <|hi|2(1 —e M, yt) dy;
i=1
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n

(i % GLUMPA = 7)) + e Wi
1

i

:]:

[ % Gre+ P =)0 | (i + e Withi)). 6.1)
1

Finally, 7; (T/_, ni (xi + Wi(h;))) is the L*(Q)-limit of T; ([T/_; pie (i + Wi(hy))),
and this limit can be obtained by sending € to zero in (6.1). This proves Lemma 6.2. O

Proof of Theorem 2.10 Without loss of generality, assume that p; > 0. Following [12], we
write (I — L)~%/2 in the following form

[e.¢]
(I—L)y%? =T(a/2)"! / e 121 dr.
0

By Lemma 6.2,

(= L)"*P[[wWih) + xi)
i=1

p

r(a/zrlfo P [ Grami P = 7)) | @ Withy) + xi))de
i=l

p
00 n
<T(@/2)! f e [T [+ Gr(mi P = 72,9 | With) +x0))|| dr.(62)
0 i=1 »
Now
n p
[T [ # GramPa = e, 9] € Witk +xi0)
i=1 P
e Wi hp)—y)? 4
2h;12(1—e21)
]_[/ i (dy)
R /27| 2(1 — e~ %)
= / dzy...dz, (l_[ Gi1(Si, xi +z; )/ HHGI(ThZz _yt])Mt(de])
j=li=l1
/ 1_[1_[u,(dy,,) Hfdz, Gl(s,,x,+z,)1‘[cl<T,,z, Yij)
R? j=li=1
where

T, = hi?(1—e™) and S = e |hi*.
By Lemma 6.1, the dz; integral is bounded by

P 2 P
/dz, Gi(Si.xi+z) [ Gi(Ti.zi —yij) < (p+DP? ﬁezwﬁ'” [16:«+DT.yip
j=1 Poi i j=1
2
a=py2  |hil? P
<T e [ G (il (p + 1
<7 ST ]1'[1 1(hi*(p + 1), yi)),
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where we have applied the inequality
|hil
VTi

Gi((p+ DTi, yij) < —=G1((p + DK%, yij).

Hence,

1 7
2 |hy|e TP

n

[T[w = GramPa—e).)] <e"Wi<h,~>+xi)>" <
p i

i=1

2
WJO((P-H)VZH , 0).

€L
n T[Zp
=1

By substituting the above upper bound into (6.2), we see that the integral in (6.2) converges
provided that

[ e <o,
04
where we have used the fact that
pSi+ T = |hilPpe™™ and  T; =20k’ (1 + 0(?)).
Therefore, @ 4+ n/p > n. This completes the proof of Lemma 2.10. O

6.2 Local Time Part (Proof of Theorem 2.11)

Proof of Theorem 2.11. This is a slight extension of [1, Theorem 1]. The proof consists
three steps. Let Ly be the local time of the standard one-dimensional Brownian motion.

Step 1. Fix € > 0. Denote

1 ify>x+e,
Fex() =3 (—x+e€)/Q2e) if |y —x| <,
0 ify<x—e.

Define
t t
Ne(x,t) = / Fe,x(Bx)de and N(x,t) = / 1{Bs>x}de-
0 0

By Tanaka’s formula,
L =B — )t — (=07 =N, ).
Notice that L(x, t) € [0, t] is a bounded random variable. On the other hand, let
LY, =B —x)" = (=x)" = Ne(x, ).
Notice that
Nx+e€,t) < Ne(x,t) < Nx —e€,t),
Using the fact that forallx € Rand y > 0
T <@4+yT<xt+y and xT>@x-yT>x"—y,
we see that
LY, <Bi—(+a+t —(—x+e)+T =N +e1n) < Li™ +e,
and
L, 2B —(x—e) -t —(—x—e) —e)" = Nx —e,1) = L; “ —e.
Hence, it holds that
Ly “—e<Li, <Li*+e. (6.3)
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Step 2. Now assume that € € (—1, 1). By telescoping sum,
|f@isevzm) = @) < (@) = [z, zm)]

+ |fE 2223z = FE Db 23 zm)]
+ ...

+ | f@ g ) — f@Eh 2y )| (6.4)

Because 86722 f = 0, the first term to the right of (6.4) satisfies that
1

|fGLzae ez = Gz oz | S (G 220 2 LA G 2200 za)]) 121 =20

Now replace z; and z; by L= Ll Yand LL := Lle f’, i =1, ..., m,respectively.
Denote the quantity in (2.15) by

Cp =Cp(t,x1,..., Xm).

Let1/r+1/q =1, g > 2. By Holder’s inequality, the first term on the right hand
side of (6.4) satisfies that

Hf(Ll,Lz,...,Lm)—f(Ll L2, ,L’")Hp

e N A LR TP AT | [ [ Z Ry ¥

‘pr

where we have used the fact (6.3). This inequality is true for all the n terms on the
right hand side of (6.4) under the same replacements. Therefore,

pr
<2 sup Hfl(L,‘*’“*f'+el,L2,...,L'")H HL}*"'—L”'
Pq

€,1
ere(=1,1)

=2Cpy ||L;C1 -

1
E,t||pr’

Hf(Ll,...,L'")—f(Lg, )

‘ <2CquHL —L],, = 2mCpye'?, 6.5)

where the last inequality is due to (2.8) of [1].
By Holder’s inequality with 1/ + 1/g = 1, we see that

]

E H)Df(Lg, LM

IA

m
Y B (1AL L || DL
i=1

)
" 1/q )
2P—IZE(|ﬁ(L;,...,Lg’)|Pq) ]E(HDL;?;

2r- ‘C,’iqZHD

where we have applied (6.3) and (2.15) as before. Hence, by (2.9) of [1],

IA

pr\ 1/r
n)

IA

LPr(Q; H)

Jore:,

Py 2mequ(||D(Bt ) Lo sy
l

+ [IDNe(xi, Ol Lor : 1)
~ 14 L
<2Cpye T forallg > 1. (6.6)

Therefore, by the same arguments as the proof of Theorem 1 in [1], we see that
(6.5) and (6.6) imply that f(Ll, o L™ eD%PR) forall p > 1land @ < 1/2.
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Step 3. In this final step, we need to verify that f(zq, ..., zm) = exp (Az ZT:l zA,-) sat-

isfies the condition (2.15). By Hdlder’s inequality, we have that, for all €; €
(L1,

m
22 exp 22 Z[L{’Xi+é‘f + €]
=1

m
»T] Hexp (AZ[L,J’xj+Ej 4 ej])
=1

m
32 1—[ Hexp (AzL.t/vaef’) H
j=1

1,x1+€ m,xXm+€
ST e L )|
P

p

IA

Hmp

IA

mp'

By Corollary 2.6,

1

€1 €L
Hexp ()LZL;C*"HJ) H =E [exp (Azmpoﬁé")] "< [26)\4'"2”2’/2 + 1] "
mp
Therefore,

1

2 4.2 2 3

max  sup ‘ fi(Ltl’x'+€'+el,...,Lf”x’"+€”’+em)H <AZhm [Ze)‘ mep ’/2+1}p.
I<i<me;e(~1,1) P

I<j<m

This completes the proof of Theorem 2.1.
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